

DIFERENCIAIS DE GELEIA REALY®

- Atividade imunomoduladora
- Auxílio contra alergias e inflamações
- Padronização exclusiva de ativos

CONSIDERAÇÕES INICIAIS

GELEIA REALY® é um exclusivo produto liofilizado a base da Geleia Real, com exclusiva dupla padronização dos componentes mais significativos do ponto de vista terapêutico: o ácido 10-hidroxi-2-decenóico (10-HDA) (5%) e as proteínas (30%). A geleia real é um componente orgânico ativo e produzido pelas abelhas operárias como forma exclusiva de alimentação da abelha-rainha. Frequentemente associada à fertilidade e longevidade da rainha, a geleia real desperta o interesse da comunidade científica quanto sua aplicabilidade em humanos. É atribuída popularmente ao consumo desta distinta geleia, a capacidade de combater o cansaço físico e mental, normalizar o apetite, promover as funções cerebrais/ cognição, além de melhorar a acuidade visual e aumentar a resistência frente a infecções virais bacterianas (KOSHIO, S. & MURADIAN, L. B. A. 2003). Considerando seus sugestivos usos populares, seus usos foram cientificamente pesquisados – em específico o 10-HDA e sua fração proteica MRJP1-9 – Major royal jelly protein (XUE X., et al. 2009), quanto a capacidade antioxidante (JAMNIK, P. et al. 2007), atividade anti-inflamatória (KOHNO, K. et al. 2004), antidislipidêmico (VITTEK, J. et al. 1995), antimicrobiana (FONTANA, R. et al. 2004), antialérgica (OKA, H. et al. 2001) e imunomoduladora (SVER, L. et al. 1996). O ácido 10-hidroxi-2-decenóico e sua contraparte saturada (10-HDA) são os principais componentes da fração lipídica e

considerados também os mais importantes ativos da geleia real, sendo sua presença indicativo da qualidade e legitimidade da geleia real (KOSHIO, S. & MURADIAN, L. B. A. 2003; SUGIYAMA, T. et al. 2012).

INDICAÇÕES E AÇÕES FARMACOLÓGICAS

Grande parte das atividades biológicas sobre a geleia real, reveladas pelos pesquisadores, são concernentes à atividade imunomoduladora expressa em diferentes modelos experimentais com as mais diversas aplicações – Alergias, doenças autoimunes e inflamações:

Linfócitos do tipo T *helper* se dividem em dois principais subtipos com atuações diferentes: Th1 e Th2. Sua expressão é apontada pelos pesquisadores como um indicativo indireto em doenças alérgicas por ser mediada pela expressão de diversas citocinas relacionadas a este tipo de doença. A interleucina 12 (IL-12) induz a diferenciação do precursor destes subtipos de linfócitos Th0, para Th1. Enquanto a IL-4 induz a diferenciação de Th0 para Th2. Estas citocinas consequentemente modulam o tipo de resposta imunológica do organismo contra um insulto patogênico específico.

Linfócitos do tipo Th1 estão melhores associados à defesa por fagocitose e contra agentes infecciosos intracelulares graças à promoção de citocinas do tipo INF-γ e TNF-α. Enquanto o tipo Th2 medeia à produção de interleucinas (IL-4, IL-5, IL-10 e IL-13), de anticorpos por plasmócitos e reações alérgicas conferidas por eosinófilos e mastócitos.

O próprio desenvolvimento destas subpopulações de linfócitos interage antagonicamente com a diferenciação da outra população. O INF-γ de Th1 diminui a diferenciação de Th2, enquanto o IL-10 produzida pela Th2 diminui o crescimento do subtipo Th1. Este mecanismo orienta qual tipo de defesa imunológica o organismo deve focar no momento, sendo um potencial alvo para terapias imunomoduladoras.

Em suma, promover a produção de citocinas do tipo IL-12, e/ou diminuir o antagonismo proposto pela interleucina IL-10 produzido pelas Th2, auxilia o organismo a menor expressão/diferenciação de linfócitos do tipo Th2, e consequentemente à reações alérgicas exacerbadas (VAZ, A. J., et al 2007).

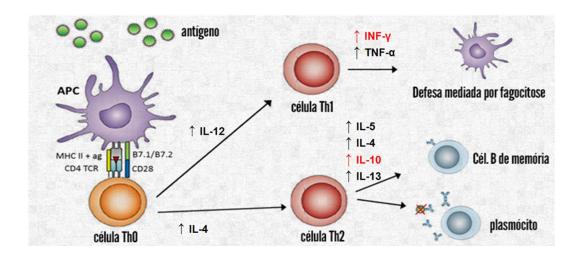


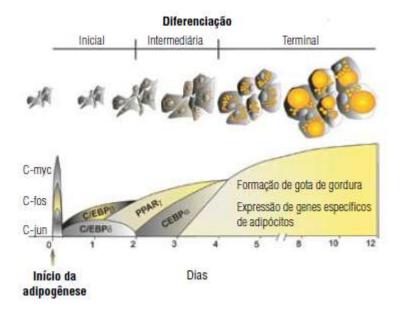
Fig.1 – Modelo esquemático da diferenciação/ amadurecimento de linfócitos Th0 em Th1 e Th2 e principais citocinas envolvidas no processo. Principais citocinas relacionadas ao antagonismo demarcado em vermelho. Adaptado de VAZ, A. J. et al 2007.

Em estudo pré-clínico in vivo, foi atribuído a um composto bioativo da fração proteica da geleia real (MRJP3) a redução da sensibilidade, e subsequente resposta alérgica, dos organismos destes animais (KURIMOTO, M. et al. 2003). Tal efeito parece derivar do melhoramento do reconhecimento e resposta de linfócitos do tipo T Helper [Th1/ Th2]. Este argumento se baseia no estudo anterior realizado por OKA, H. e colaboradores em 2001, onde se observou que a suplementação diária com geleia real foi capaz de suprimir a produção de IgE - antígeno específico, liberação de histamina pelos mastócitos e melhora da resposta macrofágica com consequente aumento da diferenciação celular do tipo Th1 em detrimento do tipo Th2.

GUENDOUZ, M. e colaboradores (2017) investigaram os efeitos preventivos da geleia real contra o desenvolvimento de resposta imunológica sistêmica e intestinal em camundongos imunossensibilizados às proteínas do leite de vaca. Os animais foram sensibilizados intraperitonealmente com a proteína do leite β-lactoglobulina, e após sete dias de suplementação com a geleia real. Desta forma, foi apontada uma diminuição significativa dos marcadores imunológicos dos grupos tratados: IgG sérica (43,78%) e IgE anti-b-Lg (66,6%) e reduziu efetivamente o nível plasmático de histamina (67,36%) (p

<0,001). Ademais, a geleia real foi capaz de reduzir significativamente (p <0,001) a disfunção intestinal pela diminuição da resposta secretora dos enterócitos (72,23%) induzida pela sensibilização, impedindo também as anormalidades evidenciadas no grupo controle sobre o comprimento das vilosidades jejunais em até 59,01% (p <0,001).

Outras avaliações como a de SUGIYAMA, T. e colaboradores (2012), revisam os múltiplos benefícios da geleia real, em especial sua fração lipídica rica em 10HDA e 10H2DA. Estes exclusivos ácidos graxos que garantem distinção a este tipo de mel são – conjuntamente com sua fração proteica, potenciais inibidores das sinalizações do sistema imunológico inato. A concentração necessária para este tipo de benefício terapêutico é apontada pelos pesquisadores como facilmente alcançável pela administração gastrointestinal. Tais estudos são particularmente interessantes, não apenas por reiterar o aspecto imunomodulador da geleia real e seus componentes bioativos, mas também apontar uma potencial linha de tratamento coadjuvante contra deficiências imunológicas, transtornos autoimunes, doença inflamatória intestinal, artrite reumatoide e alergias como a produtos de origem láctea (KOHNO, K. et al. 2004; GUENDOUZ, M. et al 2017).


GELEIA REALY® e a modulação dos fatores genéticos na obesidade

O excesso de gordura corporal na forma de triacilglicerol é o principal fator que caracteriza a obesidade – doença crônica complexa que afeta populações do mundo inteiro. O acúmulo de gordura ocorre nos adipócitos, tornando fator de risco para outras doenças, das quais se destacam as cardíacas e diabetes do tipo II.

O armazenamento de gordura nas células (responsável pela formação dos adipócitos) se dá através do processo de adipogênese. Dividido em duas fases, inicialmente ocorre a transformação das células-tronco mesenquimais multipotentes em pré-adipócitos - tecido adiposo marrom, especializado na dissipação de energia através da termogênese. A segunda fase compreende a diferenciação dos pré-adipócitos em adipócitos (tecido adiposo branco), ocorrendo o acúmulo lipídico e maior resposta a hormônios como insulina.

Diversos genes estão envolvidos no processo da adipogênese, em destaque os genes dos receptores ativados por proliferadores peroxissomais (PPARα, PPARβ e PPARγ) e a expressão de genes das proteínas ligantes ao amplificador CCAAT (C/EBP-β e C/EBP-δ). Essas proteínas controlam a expressão gênica pela ligação nos PPREs, localizados na região promotora do gene, modulando a regulação da homeostase da glicose, metabolismo de lipídeos e inflamação. PPARγ e C/EBP-α são os dois reguladores centrais do processo adipogênico. O PPARγ, expresso preferencialmente pelas células adiposas, induz enzimas lipogênicas, aumenta a ação da insulina e reduz os níveis de glicose plasmática.

Fig.2 – Modelo esquemático do processo da adipogênese (diferenciação de pré-adipócitos em adipócitos), em destaque os principais genes envolvidos nesse processo - C/EBP- β , C/EBP- δ , C/EBP- α e PPARγ (QUEIROZ et al., 2009).

A administração de **GELEIA REALY®** em estudo pré-clínico durante um período de quatro semanas mostrou-se eficiente na modulação dos fatores genéticos na obesidade, responsável por reduzir significativamente a hipertrofia dos adipócitos, evidenciando seu efeito inibitório no processo de adipogênese. Além disso, obteve-se melhora na

regulação dos níveis glicídicos. Esses fatores corroboram que a administração de **GELEIA REALY®** promove a expressão dos genes das principais proteínas do processo da adipogênese, resultando na melhora do perfil lipídico e de glicose plasmática, combatendo as principais complicações do excesso de peso corporal (QUEIROZ et al., 2009; YOSHIDA et al., 2016).

GELEIA REALY® na prevenção de infecções do trato respiratório em crianças

A geleia real é uma mistura produzida pelas abelhas operárias para fornecer um alimento principal para a abelha rainha. Estudos mostraram que se trata de uma secreção nutritiva rica em minerais, vitaminas, carboidratos e proteínas. Além disso, muitos dos benefícios importantes da geleia real têm sido atribuídas ao seu conteúdo ativo, o ácido 10-hidroxi-2-decenóico (10-HDA) (YUKSEL; AKYOL, 2016).

Um estudo isolou quatro peptídeos antimicrobianos da geleia real, e notaram que alguns deles possuem propriedades antimicrobianas contra leveduras, bactérias Gram-negativas e Gram-positivas (FONTANA et al., 2004; BRUDZYNSKI et al., 2015).

A geleia real parece exibir atividade antibactericidas e antimicrobianas, apenas pelo conteúdo ácido, ácidos orgânicos e proteínas (conhecidas principalmente como royalisina) que possui, parecendo haver evidências de um possível papel da geleia real em crianças com infecções do trato respiratório (I-VER et al., 1996).

POSOLOGIA E MODO DE USAR

2 a 11 anos: Ingerir uma dose de 100mg de GELEIA REALY®, duas vezes ao dia.

Acima de 12 anos: Ingerir uma dose de 100-300 mg de GELEIA REALY®, uma vez ao dia.

SUGESTÕES DE FORMAS FARMACÊUTICAS

Cápsula, sachê, chocolate e goma.

CONTRAINDICAÇÕES

A administração oral de **GELEIA REALY®**, nas doses recomendadas, apresenta boa tolerabilidade. Não deve ser utilizado por gestantes, crianças menores de 2 anos e lactantes.

*Material destinado ao profissional da saúde (médico, nutricionista ou farmacêutico).

REFERÊNCIAS

BRUDZYNSKI, Katrina et al. Honey Glycoproteins Containing Antimicrobial Peptides, Jelleins of the Major Royal Jelly Protein 1, Are Responsible for the Cell Wall Lytic and Bactericidal Activities of Honey. Plos One, [S.L.], v. 10, n. 4, 1 abr. 2015. Public Library of Science (PLoS). http://dx.doi.org/10.1371/journal.pone.0120238.

FONTANA, R. et al. Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 25, pp. 919-928, (2004).

GUENDOUZ, M. et al. Preventive effects of royal jelly against anaphylactic response in a murine model of cow's milk allergy, VOL. 55, NO. 1, pp. 2145–2152 PHARMACEUTICAL BIOLOGY, (2017).

IVER, Lidija et al. A royal jelly as a new potential immunomodulator in rats and mice. Comparative Immunology, Microbiology And Infectious Diseases, [S.L.], v. 19, n. 1, p. 31-38, jan. 1996. Elsevier BV. http://dx.doi.org/10.1016/0147-9571(95)00020-8.

JAMNIK, P. et al. **Antioxidative action of royal jelly in the yeast cell.** Exp Gerontol 42, pp. 594-600, (2007).

KOHNO, K. et al. Royal jelly inhibits the production of proinflammatory cytokines by activated macrophages. Biosci Biotechnol Biochem. 68: 138-145, (2004).

KOSHIO, S. & MURADIAN, L. B. A. Aplicação da CLAE Para Determinação do Ácido 10-Hidróxi-2-Decenóico (10-HDA) em Geléia Real Pura e Adicionada ao Mel Brasileiro, Quim. Nova, Vol. 26, No. 5, pp. 670-673, (2003).

KURIMOTO, M. et al. Major royal jelly protein 3 modulates immune responses in vitro and in vivo. Life Sci 73, pp. 2029-2045, (2003).

OKA, H. et al. Suppression of allergic reactions by royal jelly in association with the restoration of macrophage function and the improvement of Th1rTh2 cell responses, International Immunopharmacology 1, pp. 521–532, (2001).

QUEIROZ J C F et al. Controle da adipogênese por ácidos graxos. Arq Bras Endocrinol Metab. Vol. 53, No., 5, (2009).

SUGIYAMA, T. et al. Royal Jelly Acid, 10-Hydroxy-trans-2-Decenoic Acid, as a Modulator of the Innate Immune Responses, Endocrine, Metabolic & Immune Disorders - Drug Targets, 12, pp. 368-376, (2012).

SVER, L. et al. A Royal Jelly as a New Potential Immunomodulator in Rats and Mice, Comp. Immun. MicrobioL infect. Dis. Vol. 19, No, 1, pp. 31-38, (1996).

VAZ, A. J., et al. **Imunoensaios: fundamentos e aplicações**. Rio de Janeiro: Guanabara Koogan, (2007).

VITTEK, J. Effect of Royal Jelly on serum lipids in experimental animals and humans with Atherosclerosis, Experientia 51, (1995).

XUE X., et al. **Chemical Composition of Royal Jelly**. Bee Products - Chemical and Biological Properties. Springer, Cham, (2017).

YOSHIDA et al. Royal jelly improves hyperglycemia in obese/diabetic KK-Ay mice. The Journal of Veterinary Medical Science. Vol. 79, No. 2, pp. 299–307, (2016).

YUKSEL, Sevda; AKYOL, Sumeyya. The consumption of propolis and royal jelly in preventing upper respiratory tract infections and as dietary supplementation in children. Journal Of Intercultural Ethnopharmacology, [S.L.], v. 5, n. 3, p. 308, 2016. ScopeMed. http://dx.doi.org/10.5455/jice.20160331064836.